

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

A.G. Davis Gage & Engineering Co. Inc. 6533 Sims Drive Sterling Heights, MI 48313

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

R. Douglas Leonard Jr., VP, PILR SBU

Expiry Date: 02 October 2023 Certificate Number: AC-1568

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

A.G. Davis Gage & Engineering Co. Inc.

6533 Sims Drive Sterling Heights, MI 48313 Brenda Rowe 586-977-9000

CALIBRATION

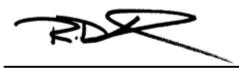
Valid to: October 2, 2023

Certificate Number: AC-1568

Length – Dimensional Metrology

Parame te r/Equipme nt	Range	Expanded Uncertainty of Measurement (+/-) ²	Reference Standard, Method, and/or Equipment
Angle	0° to <mark>360°</mark>	0.049 arc second	HP Agilent Laser Measuring System w/ D.A.A.A.M. System
Angle ¹	0° to 360°	0.15 arc second	Comparison to Master Index Table
X-Y Axis	(0 to 60) in	0.000 3 in	HP Agilent Laser Measuring System w/ SIP Hydroptic-7A
Inside Diameter	(0.05 to 1) in (1.27 to 25.4) mm (1 to 12) in (25.4 to 304.8) mm	24 μin 0.61 μm (17 + 4.8 <i>L</i>) μin (0.43 + 0.004 8 <i>L</i>) μm	Comparison made with Federal Products Horizontal Master Comparator and Gage Blocks

www.anab.org


Length – Dimensional Metrology

Parame te r/Equipme nt	Range	Expanded Uncertainty of Measurement (+/-) ²	Reference Standard, Method, and/or Equipment
Outside Diameter / Length	(0.05 to 1) in (1.27 to 25.4) mm (1 to 12) in (25.4 to 304.8) mm	24 μin 0.61 μm (17 + 4.8L) μin (0.43 + 0.004 8L) μm	Comparison made with Federal Products Horizontal Master Comparator and Gage Blocks
Outside Diameter / Height / Length	(0.05 to 1) in (1.27 to 25.4) mm (1 to 12) in (25.4 to 304.8) mm	28 μin 0.71 μm (23 + 4.5 <i>L</i>) μin (0.59 + 0.004 5 <i>L</i>) μm	Comparison made with Mikrokator, Surface Plate, and Gage Blocks

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. L =length in inches and millimeters respective to unit shown in range.
- 3. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-1568.

R. Douglas Leonard Jr., VP, PILR SBU

www.anab.org